seKoia

#OXA-granted-project #opensource #opencyberalliance

David Bizeul
Jérome Fellus



All-in-one platform
vs Cybersecurity Mesh architecture

@® Unified operation model
® Unified UI/UX

(® Captive Silo

(® Expensive non-modular licensing
® Full replacement of existing stack
(® Can't cherry-pick functionalities

(® Can't be good at everything...

(® Favor interoperability

(® Adapt & extend existing stack
® Do one job, do it right

® Focused expertise

® Need vendors cooperation
® Integration development burden
(® Scattered SOC configuration



- TLP GREEN

Challenge : Standards adoption in security
operations

o
<
o
X
L
w

Some cybersecurity operations have found their standard

Others remain mostly vendor-specific

. Incident/case Enrichment / Automated
Alert triage .
management Drilldown response

Open API



- TLP GREEN

o
<
o
X
L
w

The N-to-N integrations curse

Product A

Get product B
trial instance

Get product A
trial instance

Product B

Examine docs &
Scratch interop

surface

Examine docs &
Scratch interop
surface

Code into
product A

Code into
product B

Test, qualify,
industrialize

Test, qualify,
industrialize

e N

Homologate
& publish

Homologate
& publish




Building a mesh is...

Unmanageable
for devsec
operators Uncertain
for buyers
& end users

Cumbersome
for vendors

Tedious for
integrators

% Our contribution : an opensource assistant
to compose cybersecurity meshes




Compose...

docker compose up terraform apply

ansible-playbook <& meshroom up !




Out-of-scope

Declarative mesh 0 No builtin data
definition store, nor queuing
or processing
Remotely operate
your products via

their API Unopinionated

data/remote call

Securely store format & protocol

tenant credentials
No mesh-level user

Share mesh via git management




- TLP GREEN

Assisted mesh integration journey

]
<
(e)
<
w
7]

@ Define python hooks
to automate setup

(‘events’)
def my_setup_func(plug: Plug):

@ Declare new product
from template

meshroom create product —from edr

(®) Publish & share
via git

meshroom publish <product>

@ Play and test
meshroom add <product> <name>

meshroom produce <topic> <instance> , : meshroom plug <instance> <instance>
meshroom watch <topic> <instance> \



- TLP GREEN

]
<
(e)
<
w
7]

—

AD
Vendor declares Integrator defines Devsec ops composes a
product capabilities integrations between mesh by plugging
+ provides code examples products instances
+ implement pull/publish + implement setup hooks + configure secrets and
hooks settings
+ play with producers &
consumers

@O git

Everyone publish &



- TLP GREEN

]
<
(e)
<
w
7]

How ?

producer->consumer
producer sends data to a topic,
consumer receives data from the topic ® Dataflow
) (® Setup procedure
trigger->executor (® Boilerplate generator

trigger submit commands to a topic,
executor executes commands submitted to the topic

operation mode

push mode: source is active, destination is passive (e.g., HTTP API)
pull mode: producer is passive, consumer is active (e.g., syslog forwarding)

plug ownership
cooperative: both producer & consumer need configuration to work (e.g., AWS SQS)
unilateral: one end can setup everything without any action on the other end (e.g., TAXII)

python hooks

automate remote setup of real product instances and scaffolding of hew integration via
vendor-provided python functions executed upon meshroom commands



- TLP GREEN

]
<
(e)
<
w
7]

Meshroom model

@ Describe product
capabilities

W sl A

@ Scaffold integrations
between products

@ Instantiate products

--------------

@ Plug instances

@ meshroom up +’ Capability graph




- TLP GREEN

]
<
o
<
w
7]

meshroom
cd path
meshroom
meshroom

meshroom

Meshroom basic usage

init <path>

pull sekoia
create product

create integration

meshroom
meshroom
meshroom
meshroom
meshroom
meshroom

meshroom

add
plug

up
produce
watch
down

publish



Hooks

=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

hook called upon usage
decorator
Define an automated setup step to get a
@setup $ meshroom up ! Y up steptog

plug up-and-running on a given instance

Define an automated step to shutdown and

@teardown $ meshroom down . .
cleanup a plug from a given instance
. . Generate files for a new integration for a
@scaffold $ meshroom create integration . ; Wintegrat
certain topic
Generate integrations b lling the vendor's >
@pull $ meshroom pull erate integrat Y pUling Y required
online integration catalog
5 . Submit all defined integrations to the >
@publish $ meshroom publish u I. ! nteg . ! . required
vendor's catalog for public homologation
Send data to the plug's destination for >
@produce $ meshroom produce P9 nat required

testing

@watch $ meshroom watch Inspect data flowing through the plug required




SEKOIA.IO - TLP GREEN

Setup hook, called upon
meshroom up

Hooks : example

Unilateral setup

No remote configuration on producer
side is required

‘events”, order="first" ] owns both=True)

#Re_key(integration: Integration, plug: Plug, instance: Instance)|

“""Create an intake key to consume events
from meshroom.interaction import debug, info

if intake key := plug.get secret("intake key"):
debug("@ Intake key already exists")
return intake key

api = SekoiaAPI(

instance.settings.get("region”,
instance.get secret("API KEY"),

if not getattr(integration, "intake format uuid", None):

Hooks have access to
product instance and plugs

raise ValueError("Intakes can't be created without an intake format, see example/products/sekoia/templates/event consumer for inspiration")

intake name = integration.target product.replace(" ", " ")
entity uuid = api.get or create main entity()["uuid"]

if integration.mode == "pull":
if not getattr(integration, "automation module uuid", None):

Hooks may be specific to a product pair or generic to all 3rd-party products




DEMO!




=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

Tutorial - 0. Install meshroom

pip install meshroom

e If desired, enable auto-completion for the bash shell

(can be appended to .bashrc)

eval "$(_MESHROOM_COMPLETE=bash_source meshroom)"

e Checked installed meshroom version and get help

meshroom -v; meshroom -- help



Tutorial - 1. Inita mesh

=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

meshroom init <path>

e |Initializes a git-backed meshroom project at <path>

e Creates the initial project structure

README . md
secrets.gpg

e Starts with O product, O integration, O instance and O plug...

meshroom list products meshroom list integrations



=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

Tutorial - 2. Leverage product definitions

e Vendor has declared a product’s capabilities and hooks

e Clone product definition, copy to products/ directory

gitclone https:[[fithub.comlopencvbersecuritvaIIicmcel meshroom.git meshroom
cp -r meshroom/products/sekoia products/sekoia

rm -rf meshroom

tree

e We now have 1product, with ready to use hooks. Let's use them !

meshroom pull sekoia

e @pull hook downloads all known integrations from Sekoia’s official

catalog

meshroom list products meshroom list integrations


https://github.com/opencybersecurityalliance/meshroom.git

Tutorial - 3. Instantiate products

=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

meshroom add sekoia
meshroom add harfanglab

e Instantiate productinstances
e Products define settings and secrets : user is prompted for them here

e Instances are ready for calling $ meshroom up

meshroom list instances
meshroom list integrations sekoia harfanglab

Vendors have defined integration potentials between their products, their
are eligible for $ meshroom plug ...




Tutorial - 4. Plug products

=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

meshroom plug events harfanglab sekoia
meshroom plug endpoint_agent_isolation sekoia harfanglab

e Find matching integrations
@ If one of the products has a unilateral setup hook [own_both=True], it takes
ownership (no need for a defined integration on the other side)
® Otherwise, find a pair of integrations matching the desired operation mode
[push/pull] and topic

e Pluginstances to each other

e Integrations define settings and secrets: user is prompted for them

meshroom list plugs




Tutorial - 5. Meshroom up !

=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

meshroom up +’

e Connect & configure each defined instance
e Execute @setup hooks to configure plugs

e Wait for the whole mesh to be ready

e You're now ready to use your Cybersecurity Mesh !




=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

Tutorial - 6. Produce/consume data

meshroom watch events harfanglab sekoia

e Runs the @watch hook if defined on consumer side
e Inspects data flowing to the consumer and prints to standard output

for debugging purposes

meshroom produce events harfanglab sekoia

e Runs the @produce hook if defined on producer side
e Reads data from standard input and send it to the topic, as if it was

produced by the producer itself



Tutorial - 7. Execute/Trigger actions

=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

meshroom trigger endpoint_agent_isolation sekoia harfanglab

e Runthe @execute hook if defined on executor side

e Instruct the trigger to submit a command to its executor

meshroom trigger endpoint_agent_isolation sekoia harfanglab

e Run the @trigger hook if defined on trigger side
e Instruct the executor to directly execute the action as if it were sent by

the trigger




Tutorial - 8. Meshroom down

=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

meshroom down

e Cleanup all real product instances from what meshroom up had setup

e Leaves the user’s tenants in a clean and predictable state

(1[4

meshroom up/down commands pair works exactly as

docker compose up/down commands pair




Tutorial - 9. Define new products

=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

meshroom create product cisa_kev

e Scaffolds a product definition from a predefined template of product
ca pa bi I iti es [see https://github.com/opencybersecurityalliance/meshroom/tree/master/meshroom/templates/products]

e Add your own capabilities to products/myproduct/definition.yaml

e Define python hooks for our new product

@® @setup + @teardown hooks for & meshroom up/down

@® @pull + @publish to grab and contribute to our product’s official integrations
catalog via & meshroom pull/publish

® @scaffold hook to provide code generators for $ meshroom create

® @produce/@watch hooks for emulation via $ meshroom produce/watch



https://github.com/opencybersecurityalliance/meshroom/tree/master/meshroom/templates/products

Tutorial - 10. Scaffold new integrations

=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

meshroom create integration sekoia cisa_kev get_latest_known_exploited_vulnerabilities trigger

e Generate integration’s boilerplate code using vendor-provided
@scaffold hook
e Modify the boilerplate to implement your own action

e Define python hooks for our new product (if needed)

@® @setup + @teardown hooks for & meshroom up/down

@® @pull + @publish to grab and contribute to our product’s official integrations
catalog via & meshroom pull/publish

® @scaffold hook to provide code generators for $ meshroom create

® @produce/@watch hooks for emulation via $ meshroom produce/watch




Tutorial - 11. Share your mesh

=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

git commit -a -m “share my mesh” && git push

e Meshroom projects are git projects

(® Use git to version your mesh
(® Use git to share your mesh, privately or publicly

@ Integrate contribution from other repos to extend your mesh

meshroom publish sekoia cisa_kev

e Vendors can provide @publish hooks to streamline 3rd-party
contributions to their public integrations catalog




=
w
w
o
[0}
o
=
=
|
]
<
o
~
i
7}

Tutorial - 12. Publish your material

git commit -a -m “share my mesh” && git push

e Meshroom projects are git projects
(® Use git to version your mesh
(® Use git to share your mesh, privately or publicly

@ Integrate contribution from other repos to extend your mesh

git push

e Don't hesitate to contribute to Meshroom's official products/ directory

to make your product definition available to everyone ! &
https://github.com/opencybersecurityalliance/meshroom



seKoia

&< https://qgithub.com/opencybersecurity
alliance/meshroom

«&- https://opencybersecurityalliance.github.io
meshroom/tutorial/



https://jeromefellus-sekoia.github.io/
https://jeromefellus-sekoia.github.io/
https://jeromefellus-sekoia.github.io/

